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Abstract A numerical study on the stretching of a Newtonian fluid filament is analysed.
Stretching is performed between two retracting plates, moving under constant extension rate.
A semi-implicit Taylor-Galerkin/pressure-correction finite element formulation is employed on
variable-structure triangular meshes. Stability and accuracy of the scheme is maintained up to
large Hencky-strain levels. A non-uniform radius profile, minimum at the filament mid-plane, is
observed along the filament-length at all times. We have found maintenance of a suitable mesh
aspect-ratio around the mid-plane region (maximum stretch zone) to restrict early filament
break-up and consequently solution divergence. As such, true transient flow evolution is traced and
the numerical results bear close agreement with the literature.

1. Introduction
Flows with significant elongational components are common in industrial
applications, such as in fibre spinning. The same applies within some
rheological instruments, as typified under the measurement of extensional
viscosity. The most common types of extensional flow instabilities that
occur are necking, capillary and filament break-up. In fact,
filament-stretching flows are common in everyday-life, and may be used
as a technique to measure extensional viscosity in highly mobile fluids,
where extension rates may be large. Currently, the filament stretching
extensional rheometer (FSR) has emerged as a controllable device, for such
purposes. Matta and Tytus (1990) were the first to introduce such a device.
A modern form has been developed by Tirtaatmadja and Sridhar (1993) for
low-viscosity liquids. In recent years, due to the development of filament
stretching rheometers, attention has been diverted into this new area, and
on to the measurement of extensional properties of polymer solutions
and melts. Gaudet and McKinley (1998), Sizaire and Legat (1997), Yao and
McKinley (1998) and Yao et al. (1998) have performed numerical
simulations, based on the filament stretching rheometer of Tirtaatmadja
and Sridhar. Experimental studies were reported in Spiegelberg and
McKinley (1996), Spiegelberg et al. (1996) and Yao et al. (1998). Major
attention has been focused on the analysis and comparison of the fluid
kinematic and dynamic evolution of the extensional stresses in these liquid
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bridges. Both Newtonian and viscoelastic fluids have been considered. In
the literature, little has been reported numerically, based on the FSR of
Tirtaatmadja and Sridhar (1993). Numerical solutions have been restricted
largely to small deformations (Yao and McKinley, 1998). In the present
work, we discuss in some detail the numerical difficulties that arise during
the simulation of elongation in liquid bridges. We consider the validity of
these techniques whilst calculating extensional viscosity. First, a brief
literature review is presented, covering the extensional deformation
histories observed.

Matta and Tytus (1990) investigated constant force experiments, allowing
the lower-plate, that grips the fluid, to fall under gravity. In such
circumstances, these authors showed that the liquid bridge experienced
constant uniform extension when the plates moved apart rapidly. Tirtaatmadja
and Sridhar (1995) considered a variation to the stretching procedure for mobile
polymer systems. In their work, the plates were moved apart at an exponential
retraction-rate, so as to impose constant stretch-rate at the centre of the
filament. Berg et al. (1995) were the first to conduct experimental tests on a
reducing diameter device (RDD). The diameter of the end-plates, in such
devices, is reduced at an exponential rate with filament elongation. This type of
device exhibits homogeneous flow kinematics in the liquid bridge at low
Hencky-strains ð1 ¼ 1:4Þ: However, it has proved practically difficult to
investigate the extensional properties of liquid bridges using the RDD, due to
mechanical design constraints.

Yao and McKinley (1998) conducted a numerical study to investigate the
transient response of Newtonian and viscoelastic liquid bridges. A commercial
finite element package (POLYFLOW) was employed in their simulations, using
nine-node quadratic, quadrilateral elements [1]. An elliptic mapping and
remeshing technique (Thompson et al. (1985)) was introduced to redistribute
the internal nodes, according to the displacement of the moving boundaries.
This was found to be helpful in avoiding excessive mesh distortion. Their
findings were based on the RDD by Berg et al. (1995) and a velocity
compensation technique, as proposed by Tirtaatmadja and Sridhar (1993). The
spatial and temporal non-homogeneity of the fluid kinematics and viscoelastic
stress were investigated in some considerable detail. The transient response for
Newtonian fluids was compared against that for some viscoelastic fluids. Yao
and McKinley argue that accurate extensional material properties cannot be
based on net experimental tensile force measurements, due to inherent
inhomogeneity of deformation within the filament. A RDD approach is
commended as being optimal to improve homogeneity in flow kinematics.
Sizaire and Legat (1997) conducted a similar numerical study to that of Yao and
McKinley (1998). Sizaire and Legat neglected the effects of gravity and inertia
and reasonable agreement was reached in comparison to the literature. Indeed,
the velocity compensation technique (Tirtaatmadja and Sridhar, 1993) may
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simplify the calculation of extensional viscosity. In contrast, the stress field
developed within the filament may remain far from homogeneous (Spiegelberg
et al., 1996).

Gaudet and McKinley (1996, 1998) numerically analysed the transient
evolution of free-surface shape and applied force on the plates for Newtonian
liquid bridges. In their work, the plates moved apart at a constant, prescribed
velocity. Deformation patterns and liquid-bridge break-up time, for materials of
different viscosities, were investigated using a boundary integral method. In
their subsequent work, Gaudet and McKinley (1998) introduced a viscoelastic
liquid-bridge to simulate the extensional dynamics of stretching filaments for
constant viscosity Boger fluids. Such fluids were represented conveniently by
Oldroyd-B type models. Predictions were compared for low Hencky-strains to
their experimental results and found to lie in close agreement.

Further reference may be found in Kolte and Szabo (1999), who analysed the
capillary thinning of filaments for Newtonian and viscoelastic fluids, both
experimentally and numerically. Here, a new instrument design was
introduced, the liquid filament rheometer (LFR). The top-plate of this new
device was fixed and the bottom-plate was attached to a moving-bar. When
released, the bar and the bottom-plate fall under gravity. Minimum filament
radius was recorded directly, capturing visual images on videotape, to be
compared against numerical predictions. Hassager et al. (1998) investigated the
occurrence of ductile failure for Newtonian and viscoelastic fluid samples
without surface tension. These authors employed a Lagrangian finite element
procedure, and hence demonstrated that Newtonian liquid bridges do not show
ductile failure in the absence of surface tension. However, a mixed response
(stability and ductile failure) was gathered for viscoelastic fluids. In addition,
Ainser et al. (2000) performed simulations for the extension of viscoelastic
samples, under the weight of a falling body. Again, a Lagrangian finite element
approach was applied with a multi-mode Phan-Thien/Tanner (PIT) model. The
flow characteristics were found to be sensitive to variation in model
parameters. To avoid excess mesh distortion at protracted extension lengths,
periodically these authors regenerated a fresh mesh (involving solution
re-projection). A similar strategy is implemented in our own present studies.

Here, a semi-implicit Taylor-Galerkin/pressure-correction (SITpak) finite
element method (Hawken et al., 1990; Townsend and Webster, 1987) is used for
the first time to model the stretching and break-up of Newtonian liquid bridges.
We have appealed to the material parameters proposed by Sizaire and Legat
(1997), identified by McKinley on the basis of steady-shear data, (Table I).
Principal interest lies in quantifying solution evolution through various
Hencky-strains (thus, through time). Plates are retracted at an exponential rate,
to provide a constant stretch-rate at the filament mid-plane. The present work
presumes axi-symmetry, and symmetry about the horizontal mid-plane
between the flat-plates. Elsewhere, when considering viscoelastic fluids, we
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have found it an effective strategy to take the full filament length, hence
avoiding excessive discretisation errors about the filament mid-plane. This is
particularly important in the viscoelastic counterpart problem, as there flow
kinematics and stress enters the problem in a direct manner. Both influences of
inertia and gravity may be neglected. The complexity of the problem lies in the
dominating presence of deforming free-surface boundaries. To determine the
eventual position of the free-surface, both dynamic and kinematic conditions
must be imposed on such boundaries.

Our approach has been to hone the proposed pressure-correction
fractional-staged algorithms (see Section 6) to demonstrate accuracy,
stability and consistency, throughout this transient stretching problem. In
particular, we have relied upon a direct approach instead of a compensation
technique. The magnitude of the resultant strain-rates is observed at the
filament mid-plane, as a function of Hencky-strain. Flow kinematics, resultant
force on the plate, and extensional viscosity are each computed and compared
against the literature. In this regard, we have recourse to refer extensively to
the fundamental work of Sizaire and Legat (1997) and Yao and McKinley
(1998). To avoid temporal mesh distortion and to maintain smooth and
consistent nodal distribution, an efficient remeshing algorithm is invoked at
each time-step.

2. Governing equations and field discretisation
For incompressible, isothermal laminar flows, the governing equations may be
described through the system comprising of momentum and continuity
equations. In the absence of body forces, these may be expressed in the form

r
›u

›t
¼ 7 · T 2 ru ·7u 2 7p ð1Þ

7 · u ¼ 0 ð2Þ

where independent variables are time t, and space x. Dependent field variables
are fluid velocity u(x, t), and isotropic pressure, p. Material density is r. For
Newtonian flows, the stress T is defined via a Newtonian viscosity m0, and the
rate-of-deformation tensor D, and velocity gradient L, as

r (density) 890 (kg m23)
_10 (stretch-rate) 1.6 (s21)
L0 (initial lengh) 2.0£ 1023 (m)
R0 (initial radius) 3.5£ 1023 (m)
x (surface-tension coefficient) 28.9 £ 1023 (m)
m0(Newtonian shear viscosity) 98 (Pa s)

Table I.
Sample material
properties
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T ¼ 2m0D ð3Þ

where

D ¼
L þ Lt

2
and Lt ¼ 7u: ð4Þ

With a constant viscosity m0 and using the continuity equation (2), the
celebrated Navier-Stokes equation can be recovered:

r
›u

›t
¼ m07

2u 2 ru ·7u 2 7p ð5Þ

where m07
2u is the diffusion term.

For the dimensionless variables x* ; u* , t* , and p* , we have chosen to scale
by x ¼ x*L0; u ¼ _10L0u* ; t ¼ t*= _10; p ¼ p*m0

_10; where L0 is the initial
length of the fluid filament and _10 is the initial imposed stretch-rate. Hence, we
may define an equivalent non-dimensional system of equations to (1) and (2)
discarding the * notation for convenience of representation,

Re
›u

›t
¼ 72u 2 Reu ·7u 2 7p; 7 · u ¼ 0 ð6Þ

where the non-dimensional group Reynolds number is defined as
Re ¼ r _10L

2
0=m0:

A time-dependent SITpak algorithm (Hawken et al., 1990; Townsend and
Webster, 1987) is used to solve the governing equation (6). This involves a
two-step Lax-Wendroff approach, based on a Taylor series expansion up to
second order in time, to compute solutions through a time stepping procedure.
A two-step pressure-correction method is applied to handle the
incompressibility constraint. Employing a Crank-Nicolson treatment on
diffusion terms produces an equation system of three fractional-staged
equations. In stage one, a non-solenoidal velocity field u ðnþ1=2Þ and u* are
computed via a predictor-corrector doublet. The resulting mass-matrix bound
equation is solved via Jacobi iteration. With the use of u* , the second stage
computes the pressure difference, pnþ1 2 pn; via a Poisson equation, and the
application of a direct Choleski solver. The third stage completes the time-step
loop, calculating the end-of-time-step solenoidal velocity field u n+1, again by a
Jacobi iterative solver. The details upon this implementation may be found in
Hawken et al. (1990) and Townsend and Webster (1987).

The velocity and pressure fields are approximated by U ðx; tÞ ¼ U jðtÞfjðxÞ
and Pðx; tÞ ¼ P kðtÞckðxÞ; where U and P represent the vectors of nodal values
of velocity and pressure, respectively, and fj are piecewise quadratic and ck

linear basis functions. The fully-discrete SITpak system of equations may be
expressed in matrix form as,
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Stage 1a
2Re

Dt
M þ

1

2
S

� �
U nþ1

2 2U n
� �

¼ {2 ½S þReN ðUÞ�U þLTP þF}n

Stage 1b
Re

Dt
M þ

1

2
S

� �
ðU * 2U nÞ ¼ {2 ½S þReNðUÞ�U þF}nþ1

2 þLTP n

Stage 2 KðP nþ1 2P nÞ ¼2
2Re

Dt
LU *

Stage 3
Re

Dt
M ðU nþ1 2U * Þ ¼

1

2
LTðP nþ1 2P nÞ;

ð7Þ

where M, S, N(U), L, and K are consistent mass matrix, momentum diffusion
matrix, convection matrix, pressure gradient matrix and pressure stiffness
matrix, respectively. With elemental fluid area dV, such matrix notation
implies,

Mij ¼

Z
V

fifj dV; N ðU Þij ¼

Z
V

fi f1U 1
›fj

›x
þf1U 1

›fj

›y

� �
dV;

ðLkÞij ¼

Z
V

›fj

›xk

dV; Kij ¼

Z
V

7ci7cj dV; Sij ¼

Z
V

7fi7fj dV;

Fi ¼

Z
G2

g2fi dG2:

ð8Þ

Next we proceed to specify the various aspects of the particular flow problem in
question.

3. Problem description
We consider the case of a cylindrical filament of Newtonian fluid, stretched
in time from a rest state (Figure 1). This procedure is termed
“filament-stretching”, and is of interest in several manufacturing processes,

Figure 1.
Domain of filament
sample
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in particular, within the printing and food processing industries. This problem
has been the object of numerous experimental and numerical investigations
(Ainser et al., 2000; Berg et al., 1995; Gaudet and McKinley, 1996, 1998;
Hassager et al., 1998; Khan and Larson, 1987; Kolte and Szabo, 1999; Kröger
et al., 1992; Matta and Tytus, 1990; Padmanabhan, 1995; Sizaire and Legat,
1997; Spiegelberg and McKinley, 1996; Spiegelberg et al., 1996; Tirtaatmadja
and Sridhar, 1993, 1995; Tripathi et al., 2000; Yao and McKinley, 1998; Yao et al.,
1998), as discussed above, and provides a wealth of data for comparison
purposes.

In an ideal, homogeneous uniaxial elongational flow, a liquid bridge of initial
length L0 is stretched at an exponential rate, so that the filament length
(similarly, distance separating any two material elements), at any particular
time t, is given by:

Lt ¼ L0 expð _10tÞ; ð9Þ

where _10 is an imposed initial stretch-rate. In this ideal state and at any moment
in time, the radius of the filament remains uniform throughout its length, and
decreases from its initial value following the functional representation,

Rt ¼ R0exp 2
_10t

2

� �
: ð10Þ

For pure-extensional uniaxial flows, the axial and radial velocity components
are described, viz:

Uz ¼ _10z and Ur ¼ 2
1

2
_10r: ð11Þ

The extensional viscosity me; is defined via the tensile-stress growth in the
fluid, as a function of the imposed-extension rate in the liquid bridge. This may
be expressed in the form

með _10; tÞ ¼
tzz 2 trr

_10
; ð12Þ

where tzz and trr are the normal components of extra-stress t, defined as

t ¼ ts þ tp ð13Þ

Here, ts and tp are solvent and polymeric contributions to the extra-stress,
respectively. For Newtonian flows, we have simply,

t ¼ ts ¼ 2m0D: ð14Þ

For a Newtonian fluid with steady shear-viscosity m0, extensional viscosity can
be represented as me ¼ 3m0 (Barnes et al., 1989). In the absence of gravity and
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inertia, the tensile-force acting on any cross-sectional filament of uniform
radius R, can be obtained by integrating the normal stress differences
ðtzz 2 trrÞ; over that area. Thus, over the circular area of the plate, this leads
to the identity,

F ¼ pR 2ðtzz 2 trrÞ: ð15Þ

Hence, via equation (12), the extensional viscosity can be expressed in terms of
the applied normal force,

með _10Þ ¼
F

pR 2 _10
: ð16Þ

As a consequence, the transient Trouton ratio (Tr) can be realised, through the
ratio of extensional to steady shear-viscosity,

Tr ¼
me

m0
: ð17Þ

In the present study, we restrict attention to Newtonian fluids, and the set of
operating conditions recorded in Sizaire and Legat (1997) (Table I). We
recognize that the flow generated in the filament stretching configuration, as
shown in (Figure 1), is neither ideal nor uniaxial, due to boundary influence.
Here, we attempt to reproduce uniaxial elongation by separating end-plates at a
prescribed increasing velocity. The main interest lies in Hencky-strain, 1 ¼
_10t ¼ ln½LðtÞ=L0�; as a function of time, where L(t) is the length of the whole
filament (distance between the two plates) at time t, and L0 ¼ Lð0Þ is the initial
sample length. Plates are retracted at an exponential-rate, by arranging

LðtÞ ¼
L0

2
expð _10tÞ: ð18Þ

The geometry (one quarter of domain) and the boundary conditions are
provided in Figure 2. On the moving-plate, a driving velocity is imposed of:

UzðtÞ ¼
_10L0

2
expð _10tÞ; UrðtÞ ¼ 0: ð19Þ

The presence of non-deforming rigid end-plates and no-slip boundary
conditions induces an additional shear-component to the flow, that develops
locally to the end-plates. This will subsequently contribute to the deformation
history.

4. Free-surface computation and boundary conditions
A complete definition of the problem requires appropriate boundary conditions.
Dirichlet type boundary conditions are imposed on the known parts of the
boundary. Continuity of normal and tangential velocities is applied at a
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fluid-solid interface and continuity of stress at a free-surface (Frederiksen and
Watts, 1981) (Figure 3). On the free boundary Gfs, considering an appropriate
amount of surface-tension, we impose the following dynamic and kinematic
boundary conditions, viz.

s · n ¼ 2 pext þ x R21
1 þ R21

2

� �� �
· n ð20Þ

for the dynamic boundary condition, where s is the Newtonian Cauchy-stress
tensor,

Figure 2.
Quarter geometry with

boundary conditions

Figure 3.
Free-surface coordinate

system
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sij ¼ 2ðpdij þ 2m0dijÞ: ð21Þ

Here, x, n, d and pext are the surface tension coefficient, outward unit normal
vector to the boundary ›Gfs rate-of-deformation tensor and atmospheric
pressure, respectively. R1 and R2 are the principal radii of curvature of the
interface, defined functionally (Keunings, 1986; Tanguy et al., 1984) as,

R1 ¼
1 þ ›h=›z

� �2

›2h=›z2

" #3=2

; R2 ¼ 2h 1 þ
›h

›z

� �2
" #1=2

ð22Þ

with hðz; tÞ as below. In the axisymmetric case, we must consider two radii of
curvature, in planes orthogonal to each other.

For the kinematic boundary condition, and in order to find the eventual
position of the free-surface, h(z, t) we employ

›h

›t
¼ ur 2 uz

›h

›z
; ;t: ð23Þ

If the free-surface is flat (vertical and normal to the horizontal), at the outset of
the simulation, it will be driven by radial-velocity alone. This is always the case
near the filament mid-plane, where we have,

›h

›z
¼ 0;

›h

›t
¼ ur: ð24Þ

Elsewhere, equation (23) applies.
Due to the underpinning boundary conditions at the interface of the rigid

end-plate and free-surface, the second term on the right of equation (23)
stimulates instabilities on the free-surface (oscillations in profile, prominent in
the first few elements, near the moving-plate) (Figure 4). Since these
instabilities are local to the plate and free-surface region, a Crank-Nicolson
treatment (with u ¼ 0:5) is introduced in discretising this second-term, to the
right of equation (23). With u ¼ 1; equation (23) is recovered, under an explicit,
one-backstep interpretation between t n+1 and t n This is a measure taken to
circumvent such numerical shortcomings, implemented as

›ht nþ1

›t
¼ ut

r 2 ut
z

›h

›z

� �t nþ1

þu
›h

›z

� �t n

2
›h

›z

� �t n21
( )" #

ð25Þ

where 0 # u # 1: The use of equation (25) introduces smoothness and
consistency in surface profiles (Figure 5), at no serious additional run-time cost.
This avoids having to appeal to additional strategies to correct for free-surface
instabilities. Satisfaction of filament volume conservation is ensured at each
Hencky-strain time, through step 6 of our proposed algorithm (see Section 6).
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5. Remeshing strategies
The choice of mesh is a crucial and important step in simulating any flow
problem. Successful implementation of the numerical algorithm will depend in
part upon the accuracy afforded by the mesh. It is conspicuous that the initial
mesh will deform axially, in time, due to axial stretching and radially due to the
pinning boundary conditions and the presence of the free-surface. In order to
avoid mesh distortion, a strong remeshing rule [2] is needed to distribute the
internal, as well as the boundary nodes, in such a fashion so as to maintain
solution smoothness and stability up to higher levels of Hencky-strain. Two
different methods are commonly employed to achieve this goal:

(1) a fixed-connectivity approach; and

(2) an automatic (adaptive)-mesh generation.

Figure 4.
Free-surface profile with

instabilities

Figure 5.
Amended free-surface

profile
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The fixed-connectivity approach will maintain the original sparsity pattern,
associated with the matrices of the discrete equations. Distribution of interior
nodes is made by a predetermined rule, using logarithmic, tan-hyperbolic (tanh),
or uniform remeshing transformations. A second approach, used in recent years,
is automatic mesh regeneration, particularly suitable for domains of arbitrary
shape. This is achieved either by removing or inserting new elements until the
mesh has acquired the desired nodal density in each region of the domain. Such
an approach is most useful when the problem domain is significantly changed,
due to large surface-tension effects. At relatively small deformation, the cost of
generating new elements/nodes is low. However, under large deformation, as
presently, this scheme is not cost-effective. It necessitates a full restart of any
time-integration scheme involved, incurring large expense. The projection of
solution (interpolation of primitive variables) implies considerable cost and
introduces degradation in accuracy. To circumvent such difficulties, we have
allotted to employ a fixed-connectivity approach. A fresh mesh is generated
periodically in time (specific Hencky-strains, equating to excessive mesh distort-
ion) and the solution is reprojected from the previous mesh to the new mesh.
With a single mesh (Ml), we are able to retain stability up to Hencky-strain levels
of 4.8+. Nevertheless, a new mesh (M2) is deemed necessary at Hencky-strain
1 ¼ 2:56 to capture accuracy on the field, up to higher Hencky-strain levels of
ð1 ¼ 3:52þÞ: Each of them is discussed in subsequent sections.

The kinematic iteration is a natural, separate solution stage for transient
free-surface problems. From some initial flow field and domain, the free-surface
and moving-boundary are advanced, according to the flow on such boundaries.
An updated flow field is calculated and the boundaries advance again,
consecutively. At each step, the mesh is adjusted so as to comply with the
kinematic conditions (equation (25)) that match the motion of the moving
boundaries to the velocity field. The kinematic iteration can be applied to solve a
fully transient problem, or simply to solve a steady state problem. Due to the
underpinning boundary conditions and the presence of the free-surface, the mesh
experiences large deformation both radially (near the interface of the free-surface
and the top-plate) and axially. Uniform remeshing is performed radially. For
axial remeshing, where the mesh undergoes large stretching, two different
remeshing techniques, tan-hyperbolic (tanh) and logarithmic remeshing rules
have been implemented. The principal objective is to maintain smoothness of the
mesh, in such a manner, that the nodes remain concentrated in certain regions of
reference. Redistribution of mesh points and mesh concentration in the
tanh-scheme are maintained by a specified control parameter (for more details,
the reader is referred to the implementation of elliptic-mappings in Thompson
et al., 1985). A typical mapping function may be expressed as:

Ht nþ1

i ¼ 1 2
tanh b 1 2 Ht n

i

� �� �
tanhb

; ð26Þ
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where Hi, 0 # Hi # 1; is the axial node-position of node i, and b is a
mesh-density control parameter.

With the tanh-scheme, large aspect-ratios have resulted about the mesh
mid-plane region. This causes filament break-up away from the mid-plane, at
large Hencky-strain levels (Figure 6). Nevertheless, this scheme performs well
at relatively small Hencky-strain levels. Since the problem under consideration,
does experience large deformation, a log-remeshing algorithm is employed

Figure 6.
Evolution of filament
structure, Newtonian

fluid, different
Hencky-strains,

tanh-remeshing scheme;
arrows indicate

minimum radial location
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instead (Thompson et al., 1985). Since the shape of the free-surface is highly
curved near the top moving-plate, a finer mesh is deemed necessary to retain
mesh aspect-ratio, and hence accuracy and stability. A modified log-remeshing
approach is implemented for axial remeshing, where the mesh undergoes large
stretching. This mapping function is given by

Ht nþ1

i ¼ Ht n

i þ
2iDHt nþ1

i

telmðtelm þ 1Þ
; ð27Þ

where telm is the total number of elements along the mesh-length, and Ht nþ1

i is
the current displacement. In this manner and by design, high element-density is
maintained near the top-plate, see contrast in results between Figures 6 and 7.

Two rectangular meshes M1 of 12 £ 40 elements, with 2,025 nodes and 960
triangular elements, and M2 of 12 £ 106 elements, consisting of 5,025 nodes
and 2,544 triangular elements, are used to perform the numerical simulation.
The simulation commences from a simple mesh, but soon encounters large
deformation that persists in time due to the transient nature of the problem. To
avoid excessive mesh distortion at large deformation, and to retain smooth
internal node distribution, the above cited low-cost remeshing algorithm (27) is
applied at each time-step. Results are compared with Gaudet and McKinley
(1998), Sizaire and Legat (1997) and Yao and McKinley (1998). Our solutions
prove stable up to large Hencky-strains of 4.8+ units. A high level of field
solution accuracy is maintained and reported, up to Hencky-strains of 3.52+

units. This exceeds findings in the literature.
With respect to mesh-structure, it has been found advantageous to introduce

a slight modification in the corner elements of these meshes. In Figure 8(a), a
schematic diagram of the initial mesh-orientation is shown. Here, node N2 and
N4 are surrounded by two elements. In order to compute the velocity gradients
at node Ni, we have recourse to a direct recovery technique (Matallah, 1998),
which takes the average of nodal gradient values from the surrounding
elements. This leads to quadratic continuous interpolation for gradients.

For an incompressible fluid, from the no-slip boundary conditions and
continuity equation, we have Drr ¼ Dzz ¼ 0 on end-plates. Through
application of the recovery technique, corner-nodes N2 and N4, as shown in
Figure 8(a), would gather contributions from more than one boundary element,
To avoid this, we can use either a pointwise finite-difference approach on the
boundaries, or adjust the element topology in that region, so that, only a single
element contributes to the node. Note that nodes N1 and N3 receive
contributions from a single element only. In the present simulations, we have
allotted for mesh-orientation, as shown in Figure 8(b), with the use of
one-dimensional point-wise approximation [3] over straight-line boundaries,
Gplate, Gcl and Gmid-plane (Figure 8(b)). We have found that point-wise
approximation on the free-surface boundary (Gfs) performs less well.
Hence, we have taken recovered velocity-gradients, upon the deformed

HFF
13,7

912



free-surface boundary and internal field. Within the purely viscous
scenario, the rate-of-deformation tensor only enters the calculation through a
post-processing operation. However, for complex free-surface viscoelastic
flows, where gradients play an important role in the calculation of
primary-variable stress fields, the precise details on velocity gradient
estimation are crucial. Both mesh-structure and velocity-gradient estimation
must be revisited.

Figure 7.
Evolution of filament
structure, Newtonian

fluid, different
Hencky-strains, modified

log-remeshing scheme
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6. Algorithm
The individual sequence of steps taken within a single Hencky-strain step
(DtHencky) are identified as follows:

(1) Hencky-strain, time-step number: nstep ¼ nstep þ 1:

(2) Fix plate-boundary conditions via equation (19).

(3) Move plate via equation (18) (DtHencky).

(4) Update mesh-points locations, to occupy new position relative to
plate-movement, via equation (27).

(5) Correct velocity and pressure fields solving fractional-stages (7), with
dynamic boundary condition (20), to reach convergence tolerance 1025,
(Dtinner).

(6) Compute free-surface via equation (25), (Dtfs)

Figure 8.
Schematic diagram of
mesh. (a) Initial, and (b)
modified element
orientation; corner nodes
N2 and N4
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. update mesh-points radially;

. compute filament volume if kVolexact 2 Volhk=kVolexactk # Voltol

go to 8, continue;
. solve fractional-stages (7) to update-solution;
. Go to 7.

(7) Print output: normal force, extension-rate, Trouton ratio, Rmin.

(8) Print solution at current Hencky-strain level (real-time).

(9) Go to 2.

In the current formulation, we choose three different time-step sizes as DtHencky

to shift the plate at each Hencky-strain (real-time, step 3), Dtinner to compute the
velocity field (step 5) and Dtfs, for free-surface movement. For mesh Ml, up to
Hencky-strain levels 1 ¼ 2:56; we have taken DtHencky ¼ Dtinner: For mesh M2,
at smaller mesh-size, we have used Dtinner ¼ DtHencky £ 0:5 and for free-surface
computation, taken Dtfs ¼ Dtinner £ 0:5:

Since the flow under consideration is incompressible, the volume of the
liquid-bridge should remain constant throughout the stretching period. This
condition is met at step 6 of the algorithm. At each Dtfs, the free-surface
boundary is shifted via equation (25). This is accomplished in such a fashion
that the relative error norm between the exact volume (Volexact, initial volume)
and the computed instantaneous volume (Volh) remains less than the specified
tolerance (Voltol), taken here as 1 per cent.

7. Numerical results and discussion
A half-length model (Figure 2), is considered for simulation at a negligible
Reynolds number. The volume of the liquid bridge is conserved at all times.
The deformation of the filament and its free-surface evolution is shown in
Figure 7, at various Hencky-strain (time) levels. The radius varies along the
filament length at all times, due to the underpinning boundary conditions on
the moving end-plate. Yet, minimum radial location should always correspond
to the mid-plane of the filament. Large deformation is observed during
stretching. Computed minimum filament radius is plotted against time in
Figure 9. The slope of this variation in minimum radius Rmin, is observed to
decrease in a smooth exponential fashion (equation (10)), up to a Hencky-strain
level of 1 ¼ 2:0. Subsequently upon mesh Ml, a slight departure is observed
that continues up to the point of filament break-up ð1 ¼ 4:8þÞ: Though an
acceptable minimum radius profile is achieved up to Hencky-strain level of
1 ¼ 4:8þ; still this setting failed to capture accuracy in field variables of
interest. For example, in flow kinematics, strain-rates and extensional viscosity
distributions. This is due to high deformation in the middle of the fluid column,
where mesh elements acquire large aspect ratios. Hence, a new mesh (M2) was
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generated and simulation recommenced, by solution reprojection from mesh Ml
at 1 ¼ 2:56þ: With this new mesh, we have been able to recapture accuracy on
the field to relatively large levels of Hencky-strain. As demonstrated in Figure 9,
the filament thins rapidly at the symmetry plane for Hencky-strains of
1 ¼ 3:2þ: This trend subsequently causes filament break-up at 1 ¼ 3:52þ:
These instabilities can be attributed to the rapid increase in radial flow
kinematics and high extension-rates generated at the filament mid-plane, which
differ from the imposed constant extension-rates. This is held to be physically
acceptable, as discussed later.

For an ideal uniaxial flow, the radial and axial velocity profiles can be
obtained from equation (11). For flows, which are not purely uniaxial,
Spiegelberg et al. (1996) proposed a lubrication theory solution (referred to as
analytical) for viscous Newtonian fluids. This approximation is true for small
Hencky-strain levels. Hence, we have compared our computed radial and axial
velocity profiles with this solution, described by

Ur ¼ 23 _10 1 2
z

Lp

� �
z

Lp

� �
; ð28Þ

Uz ¼ 2
_
Lpr 3 2 2

z

Lp

� �
z

Lp

� �2

: ð29Þ

The comparison of the complete numerical solution with that represented by
equations (28) and (29) demonstrates the accuracy of radial and axial velocity
profiles at the low Hencky-strains (Figures 10-13). Axial velocity profiles are
calculated along the centreline ðr ¼ 0Þ and the radial velocity profiles, Ur, on
the deformed free-surface. On mesh Ml, our results are in close proximity with
the analytical solution (lubrication approximation) (Spiegelberg et al., 1996) up
to Hencky-strains 1 ¼ 2:56þ: After this stage, slight deviation is detected, see

Figure 9.
Minimum filament
radius, Rmin(1), on
symmetry mid-plane
ðz ¼ 0Þ; mesh M1
ð1 ¼ 0-2:56Þ: 12£ 40
elements, 2,025
nodes; mesh M2
ð1 ¼ 2:56þ-3:52Þ :
l2£ 106 elements,
5,025 nodes
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Figure 12 for 1 ¼ 2:88: With the new mesh M2, we have been able to recapture
the field solution accuracy up to Hencky-strain level of 1 ¼ 3:52; when radial
velocity peaks dramatically at the filament mid-plane. Such a scenario leads to
the ultimate thinning and break-up of the liquid-bridge (Figures 11 and 14).
Large radial displacements are observed at the mid-symmetry plane, due to the
peak in the radial velocity in that region. Colour contours of both the radial and
axial velocity components are shown in Figures 14 and 15, respectively.
Parabolic profiles of radial velocity component are obtained throughout the

Figure 10.
Ur profiles, along

free-surface, mesh M1,
ð1 ¼ 0:32; 0:96;

1:6; 2:24; 2:56; 2:88Þ
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liquid bridge. The axial velocity component has exposed uniformity across the
filament and non-homogeneity along the length of the liquid-bridge, maxima on
the plate, whilst vanishing on the mid-symmetry plane. The radial velocity [4]
is observed to be the major driving factor. It is responsible for the generation of
the correct free-surface profile (curvature/location), and assists in retaining the
solution accuracy and stability up to large Hencky-strain levels. Our results on
filament curvature (shape) are in close agreement with those of Yao and
McKinley (1998) (who have enforced velocity compensation) up to
Hencky-strain levels of 3.0 units, and with Sizaire and Legat (1997) up to
Hencky-strain levels of 1 ¼ 2:0þ units (Figure 9).

Figure 11.
Ur profiles along
free-surface, mesh M2,
ð1 ¼ 2:56; 3:2; 3:52Þ
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Another important quantity, difficult to estimate experimentally, is the history
of the rate-of-deformation within the liquid bridge. In an ideal uniaxial flow, the
rate-of-deformation tensor satisfies equation (11) at all times. Thus, a shear-free
flow field is obtained, as Drz ¼ 0 and Dzz ¼ _10: The flow under consideration
inherits a shearing component due to the no-slip boundary conditions at the
end-plates. The colour contours of Drz and Dzz components of the
rate-of-deformation tensor are shown in Figures 16-17. Initially (at small
Hencky-strains), the flow in the liquid-bridge is dominated by its radial velocity
component (moving inward). Consequently, some shear may be attributed to

Figure 12.
Uz profiles, centreline
ðr ¼ 0; zÞ; mesh M1,

ð1 ¼ 0:32; 0:96;
1:6; 2:24; 2:56; 2:88Þ
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the underpinning boundary conditions, prior to the development of dominant
extension in the flow. Hence, significant shearing effects can be observed at
small Hencky-strain levels of 1 ¼ 0:32: Maxima in Drz is localised to the
interface of the free-surface and the rigid end-plate. These shearing effects
decline with increasing Hencky-strain levels (Figure 16). Equivalently, maxima
in Dzz are observed at the mid-plane.

Sizaire and Legat (1997) reported stability in their numerical simulations up
to Hencky-strains of 4.5+ for Newtonian flows. Nevertheless, these authors fail
to report explicitly on accuracy attainment in field solution, providing only
scalar measures such as line-plots. From these line-plots, it would appear that

Figure 13.
Uz, centerline
ðr ¼ 0; zÞ; mesh M2,
ð1 ¼ 2:56; 3:2; 3:52Þ
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their solutions capture accuracy at low Hencky-strain levels. Deformation field
measures are not discussed. To avoid mesh distortion and retain smoothness,
these authors utilised a Thompson elliptic-operator remeshing technique.
A similar approach was adopted by Yao and McKinley (1998), with recourse to
velocity compensation. In this manner, Yao and McKinley reached large
Hencky-strains of 4.8+ Nonetheless, in a recent paper, Gaudet and McKinley
(1996) investigated a conventional approach, coupled to a velocity
compensation technique, for both Newtonian and non-Newtonian viscoelastic
flows. Notably, the numerical simulations of Gaudet and McKinley diverged
beyond Hencky-strains of 2.8+. The cause of this failure was not identified.

Figure 14.
Ur colour contours,

various Hencky-strains
(times)
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Here, both accuracy and stability were gathered up to filament-breakup. In the
light of our current findings, we speculate that the likely cause of such
premature numerical divergence is due to the excessive mesh aspect-ratios.
Settling upon an appropriate mesh aspect-ratio may suppress such numerical
shortcomings.

Figure 9 shows that the minimum filament radius, Rmin(t), beyond the
Hencky-strain levels of 1 ¼ 2:0, decreases in a complicated fashion.
Strain-rates vary both in space and time. Consequently, analysis of results
becomes complicated, which detracts from accurate determination of material
properties (Tirtaatmadja and Sridhar, 1993). Since the flow near the mid-plane

Figure 15.
Uz colour contours,
various Hencky-strains
(times)
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is almost shear-free, Kröger et al. (1992) and Spiegelberg et al. (1996) proposed a
method to compute, transient extensional viscosity, based on an effective
deformation-rate:

_1effðtÞ ¼ 2
2

Rmid

dRmid

dt
¼

22Ur;mid

Rmid
: ð30Þ

In addition and for comparison purposes, we have computed both the average
and pointwise estimates of deformation-rates at the filament mid-plane,
following Yao and McKinley (1998), viz.:

Figure 16.
Deformation-rate colour

contours: shear
component Drz, various
Hencky-strains (times)

Numerical
simulation

923



(1) average axial velocity gradient over filament mid-plane

_1aveðtÞ ¼ 2

Z Rmid

0

rDzz½r; z ¼ 0�dr=R2
mid; ð31Þ

(2) pointwise value of Dzz at filament central-point (0, 0)

_1pointðtÞ ¼ Dzz½r ¼ 0; z ¼ 0�: ð32Þ

Figure 17.
Deformation-rate colour
contours: axial
component Dzz, various
Hencky-strains (times)
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Deformation-rates calculated using equations (30) and (32) provide identical
profiles (Figure 18). A slight, but consistent overestimation is observed through
the averaged evaluation of equation (31). Both _1pointðtÞ and _1effðtÞ are consistent
with the lubrication prediction, _1effðtÞ ¼ 1:5 _10 (Spiegelberg et al., 1996). A
constant extension-rate is maintained up to Hencky-strain levels of 1 ¼ 3:3
units. These results are in close agreement with those of Sizaire and Legat
(1997) up to higher Hencky-strain levels. Moreover, in our numerical
simulations, we have been able to recover the imposed strain-rate without
recourse to velocity compensation.

Following Yao and McKinley (1998), in the absence of inertia and gravity,
we have modified equation (17) to a generalized form to compute the transient

Figure 18.
Extension-rate

development versus
Hencky-strain

(pointwise: r ¼ 0; z ¼ 0;
effective: Rmid(t),

z ¼ 0; average: r, z ¼ 0);
line-points (at constant

unity) indicate initial
imposed stretch-rate _10;

non-dimensional)
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Trouton ratio as:

Tr ¼
me

m0
¼

Fz

m0
_10pR2

mid

2
x

m0
_10R

ð33Þ

where Rmid is the minimum radius at the mid-plane of the filament and x is the
surface tension coefficient. The normal force Fz on the plate is evaluated as:

FzðtÞ ¼

Z
A

½tzzðr; z0; tÞ þ P0� dA ð34Þ

where the range of integration, A, is the domain of the circular filament-foot
(radius R) on the end-plate at z0 ¼ 0: Due to the no-slip boundary conditions on
the moving end-plate, employing the continuity equation and equation (14), we
gather that both axial and radial normal stress components must vanish.
Hence, for Newtonian flows and equation (34), the pressure is the only
non-trivial quantity that contributes to the normal force on the moving
end-plates. Pressure colour contours are displayed in Figure 19. Maxima in
pressure magnitude arises on the plate at small Hencky-strains. With
increasing Hencky-strains, the location of maxima in pressure magnitude
switches to the symmetry mid-plane and vanishes on the rigid-end plate.
Consequently, the force measured on the moving end-plate decreases and
vanishes with time (Figure 20). The computed normal force Nf, on the plate is
negated, to imply physical meaning through magnitude. The transient
evolution profile of Tr is shown in Figure 21. The curve of Tr based on _1pointðtÞ
and _1effðtÞ asymptotes to the Newtonian value of Tr ¼ 3, up to Hencky-strain
levels of 2.56, concurring with the literature (Sizaire and Legat, 1997; Yao and
McKinley, 1998).

Figure 19.
Pressure colour contours,
various Hencky-strains
(times)
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8. Conclusions
Here, our main attention has been focused on investigating new algorithmic
aspects in the context of applying a Taylor-Galerkin/pressure-correction
scheme to the filament stretching problem. This has provided insight into the
onset of instabilities, which cause solution degradation and ultimately leads to
filament break-up. Our results have shown that a suitable choice of mesh
aspect-ratio around the filament mid-plane region, where break-up occurs, is
particularly important. This can capture accuracy and retain stability up to
large Hencky-strain levels. In this sense, we have shown that an appropriate
choice of remeshing technique plays a crucial role in achieving the solution
stability and accuracy. We summarise the achievements borne out through the
present study as:

. successful implementation of a TGPC scheme (SITpak), for a
true-transient flow, under the presence of an evolving free-surface;

Figure 20.
Normal force, Nf, on
moving-plate versus

Hencky-strain (non
dimensional)

Figure 21.
Tr development versus

Hencky-strain,
symmetry mid plane

ðr; z ¼ 0Þ
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. proposal of an effective, low-cost remeshing algorithm;

. circumvention of the need for correction via velocity compensation;

. attainment of filament stability up to the large Hencky-strain levels of
1 ¼ 4:8þ; and

. capture of field accuracy up to impressive Hencky-strain levels of
1 ¼ 3:52þ. Here, our results are highly competitive.

The present approach is based on direct evaluation from the kinematics and
extension rates involved. Hence, it departs from the velocity compensation
approach, as employed in Yao and McKinley (1998). A triangular-based finite
element approach is applied here, and the results obtained are consistent with
those appearing in the literature (Sizaire and Legat, 1997; Yao and McKinley,
1998) on filament shape and in field representation, where equitable. Our
numerical results bear out that radial profiles vary non-uniformly along the
liquid bridge and reach a minimum, Rmin, at the mid-point of the filament. This
is due to the underpinning boundary conditions at the interface between the
rigid non-deformable moving end-plates and the free-surface. The early
evolution of Rmin decreases smoothly according to the analytical (lubrication)
approximation (Spiegelberg et al., 1996). Subsequently, slight departure is
observed: the slope changes gradually and becomes steeper, just prior to the
filament break-up. The predicted velocity profiles, radial component Ur along
the free-surface and axial Uz along the axial centreline, track the lubrication
approximation up to Hencky-strain levels of 1 ¼ 3:0 units.

In terms of our sampled field results on rate-of-deformation at specific
Hencky-strain levels, the flow is observed to experience some shearing effects
at low Hencky-strains. These subsequently diminish with increasing
Hencky-strains. The presence of these shearing effects indicates that the flow
is not purely uniaxial, and particularly so at low Hencky-strains. This state of
affairs will be reflected in laboratory experiments and the measurement of
material properties through filament stretching rheometers. Gaudet and
McKinley (1998), Sizaire and Legat (1997), Yao and McKinley (1998) and Yao
et al. (1998) have all reported similar findings. Both effective extension-rates
and resultant Trouton ratios are in close agreement with the literature (Sizaire
and Legat, 1997; Yao and McKinley, 1998). Future work will be devoted in
investigating the consequences of adaptive remeshing algorithms, application
of velocity compensation, or a combination of both.

Notes

1. Similar to the approach adopted by Wilkes et al. (1999), with reference to dynamic drop
formation. Note that in the current context, volume conservation is vital, determining field
solution and correct surface curvature.

2. A remeshing strategy with the ability to maintain element density (concentration) and mesh
aspect ratio, near the point or line of reference, without adding/removing elements.
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3. Appeals to underlying fe-interpolants, but at selected sample points and along restricted
directions.

4. Free-surface movement largely depends on Ur. The larger the Ur (magnitude), the smaller
the Rmid(t). Hence, the larger the effective deformation-rate and Trouton ratio.
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